Languages:
 

Table SPM-3. (WGIII)

Key mitigation technologies and practices by sector. Sectors and technologies are listed in no particular order. Non-technological practices, such as lifestyle changes, which are cross-cutting, are not included in this table (but are addressed in paragraph 7 in this SPM).

Sector Key mitigation technologies and practices currently commercially available. Key mitigation technologies and practices projected to be commercialized before 2030.
Energy Supply [4.3, 4.4] Improved supply and distribution efficiency; fuel switching from coal to gas; nuclear power; renewable heat and power (hydropower, solar, wind, geothermal and bioenergy); combined heat and power; early applications of CCS (e.g. storage of removed CO2from natural gas) Carbon Capture and Storage (CCS) for gas, biomass and coal-fired electricity generating facilities; advanced nuclear power; advanced renewable energy, including tidal and waves energy, concentrating solar, and solar PV.
Transport [5.4] More fuel efficient vehicles; hybrid vehicles; cleaner diesel vehicles; biofuels; modal shifts from road transport to rail and public transport systems; non-motorised transport (cycling, walking); land-use and transport planning Second generation biofuels; higher efficiency aircraft; advanced electric and hybrid vehicles with more powerful and reliable batteries
Buildings [6.5] Efficient lighting and daylighting; more efficient electrical appliances and heating and cooling devices; improved cook stoves, improved insulation ; passive and active solar design for heating and cooling; alternative refrigeration fluids, recovery and recycle of fluorinated gases Integrated design of commercial buildings including technologies, such as intelligent meters that provide feedback and control; solar PV integrated in buildings
Industry [7.5] More efficient end-use electrical equipment; heat and power recovery; material recycling and substitution; control of non-CO2gas emissions; and a wide array of process-specific technologies Advanced energy efficiency; CCS for cement, ammonia, and iron manufacture; inert electrodes for aluminium manufacture
Agriculture [8.4] Improved crop and grazing land management to increase soil carbon storage; restoration of cultivated peaty soils and degraded lands; improved rice cultivation techniques and livestock and manure management to reduce CH4 emissions; improved nitrogen fertilizer application techniques to reduce N2O emissions; dedicated energy crops to replace fossil fuel use; improved energy efficiency Improvements of crops yields
Forestry/forests [9.4] Afforestation; reforestation; forest management; reduced deforestation; harvested wood product management; use of forestry products for bioenergy to replace fossil fuel use Tree species improvement to increase biomass productivity and carbon sequestration. Improved remote sensing technologies for analysis of vegetation/ soil carbon sequestration potential and mapping land use change
Waste [10.4] Landfill methane recovery; waste incineration with energy recovery; composting of organic waste; controlled waste water treatment; recycling and waste minimization Biocovers and biofilters to optimize CH4 oxidation

Source: IPCC Climate Change 2007:  Working Group III Report "Mitigation of Climate Change, Summary for Policymakers", p14

Related publication:
Climate Change (2007) homeClimate Change 2007 Update
Other Figures & Tables on this publication:

Figure SPM-1. (WGI) Changes in Greenhouse Gases from Ice-core and Modern Data

Figure SPM-2. (WGI) Radiative Forcing Components

Figure SPM-3. (WGI) Changes in Temperatures, Sea Level and Snow Cover between 1850 and 2010

Figure SPM-4. (WGI) Global and Continental Temperature Change

Figure SPM-5. (WGI) Multi-model Averages and Assessed Ranges for Surface Warming

Figure SPM-6. (WGI) AOGCM Projections of Surface Temperatures

Figure SPM-7. (WGI) Projected Patterns of Precipitation Changes

Figure SPM-1. (WGII) Changes in physical and biological systems and surface temperature 1970-2004

Figure SPM-2. (WGII) Key impacts as a function of increasing global average temperature change

Figure SPM-1. (WGIII) Emissions of different greenhouse gases 1970-2004

Figure SPM-2. (WGIII) Relative global development of indicators of income, energy supply, CO2 emissions and population for 1970 to 2004

Figure SPM-3a. (WGIII) Distribution of regional per capita greenhouse gas emissions

Figure SPM-3b. (WGIII) Distribution of regional greenhouse gas emissions per unit of income

Figure SPM-4. (WGIII) Global greenhouse gas emissions for 2000, 2030 and 2100

Figure SPM-5a/5b. (WGIII) Estimated global economic mitigation potential

Figure SPM-6. (WGIII) Estimated economic mitigation potential in 2030 as a function of carbon price

Figure SPM-7. (WGIII) Emissions pathways of mitigation scenarios for alternative categories of stabilization levels

Figure SPM-8. (WGIII) Relationship between stabilization scenario categories and equilibrium global mean temperature change

Figure SPM-9. (WGIII) Cumulative emissions reductions for alternative mitigation measures for 2000 to 2030 (left-hand panel) and for 2000-2100 (right-hand panel)

Global greenhouse gas emissions 1970-2004

Table SPM-1. (WGI) Observed rate of sea level rise and estimated contributions from different sources.

Table SPM-2. (WGI) Recent trends, assessment of human influence on the trend, and projections for extreme weather events for which there is an observed late 20th century trend.

Table SPM-3. (WGI) Projected globally averaged surface warming and sea level rise at the end of the 21st century.

Table SPM-1. (WGII) Examples of possible impacts of climate change due to changes in extreme weather and climate events based on projections to the mid- to late 21st century. These do not take into account any changes or developments in adaptive capacity. Examples of all entries are to be found in chapters in the full Assessment (see source at top of columns). The first two columns of the table (shaded yellow) are taken directly from the Working Group I Fourth Assessment (Table SPM-2). The likelihood estimates in Column 2 relate to the phenomena listed in Column 1.

Table SPM-4. (WGIII) Estimated global macro-economic costs in 2030a for least-cost trajectories towards different long-term stabilization levels.b,c

Table SPM-5. (WGIII) Characteristics of post-TAR stabilization scenarios [Table TS 2, 3.10]a

Table SPM-6. (WGIII) Estimated global macro-economic costs in 2050 relative to the baseline for least-cost trajectories towards different long-term stabilization targetsa [3.3, 13.3]

Table SPM-7. (WGIII) Selected sectoral policies, measures and instruments that have shown to be environmentally effective in the respective sector in at least a number of national cases.

Table SPM-1. (WGIII) Global economic mitigation potential in 2030 estimated from bottom-up studies.

Table SPM-2. (WGIII) Global economic mitigation potential in 2030 estimated from top-down studies.

Table SPM-3. (WGIII) Key mitigation technologies and practices by sector. Sectors and technologies are listed in no particular order. Non-technological practices, such as lifestyle changes, which are cross-cutting, are not included in this table (but are addressed in paragraph 7 in this SPM).

Figure SPM-2. (WGII) Key impacts as a function of increasing global average temperature change

Figure SPM-6. (WGIII) Estimated economic mitigation potential in 2030 as a function of carbon price

Likelihood

The Emission Scenarios of the IPCC Special Report on Emission Scenarios (SRES)

Box SPM-2 (WGIII) Mitigation potential and analytical approaches

Box SPM-3 (WGIII) Assumptions in studies on mitigation portfolios and macro-economic costs

Box SPM-4 (WGIII) Modelling induced technological change

Parties & Observers of the UNFCCC