Home » CO2 Capture & Storage » Level 3 » Question 6

CO2 Capture and Storage

6. Could CO2 be stored in the deep ocean?

  • 6.1 What are the methods of ocean storage?
  • 6.2 What are possible environmental impacts and costs of ocean storage

6.1 What are the methods of ocean storage?

The source document for this Digest states:

A potential CO2 storage option is to inject captured CO2 directly into the deep ocean (at depths greater than 1,000 m), where most of it would be isolated from the atmosphere for centuries. This can be achieved by transporting CO2 via pipelines or ships to an ocean storage site, where it is injected into the water column of the ocean or at the sea floor. The dissolved and dispersed CO2 would subsequently become part of the global carbon cycle. Figure TS.9 shows some of the main methods that could be employed. Ocean storage has not yet been deployed or demonstrated at a pilot scale, and is still in the research phase. However, there have been small- scale field experiments and 25 years of theoretical, laboratory and modelling studies of intentional ocean storage of CO2.

Figure TS.9. Methods of ocean storage

Storage mechanisms and technology

Oceans cover over 70% of the earth’s surface and their average depth is 3,800 m. Because carbon dioxide is soluble in water, there are natural exchanges of CO2 between the atmosphere and waters at the ocean surface that occur until equilibrium is reached. If the atmospheric concentration of CO2 increases, the ocean gradually takes up additional CO2. In this way, the oceans have taken up about 500 GtCO2 (140GtC) of the total 1,300 GtCO2 (350 GtC) of anthropogenic emissions released to the atmosphere over the past 200 years. As a result of the increased atmospheric CO2 concentrations from human activities relative to pre-industrial levels, the oceans are currently taking up CO2 at a rate of about 7 GtCO2 yr-1 (2 GtC yr-1).

Most of this carbon dioxide now resides in the upper ocean and thus far has resulted in a decrease in pH of about 0.1 at the ocean surface because of the acidic nature of CO2 in water. To date, however, there has been virtually no change in pH in the deep ocean. Models predict that over the next several centuries the oceans will eventually take up most of the CO2 released to the atmosphere as CO2 is dissolved at the ocean surface and subsequently mixed with deep ocean waters.

There is no practical physical limit to the amount of anthropogenic CO2 that could be stored in the ocean. However, on a millennial time scale, the amount stored will depend on oceanic equilibration with the atmosphere. Stabilizing atmospheric CO2 concentrations between 350 ppmv and 1000 ppmv would imply that between 2,000 and 12,000 GtCO2 would eventually reside in the ocean if there is no intentional CO2 injection. This range therefore represents the upper limit for the capacity of the ocean to store CO2 through active injection. The capacity would also be affected by environmental factors, such as a maximum allowable pH change.

Analysis of ocean observations and models both indicate that injected CO2 will be isolated from the atmosphere for at least several hundreds of years, and that the fraction retained tends to be higher with deeper injection (see Table TS.7). Ideas for increasing the fraction retained include forming solid CO2 hydrates and/or liquid CO2 lakes on the sea floor, and dissolving alkaline minerals such as limestone to neutralize the acidic CO2. Dissolving mineral carbonates, if practical, could extend the storage time scale to roughly 10,000 years, while minimizing changes in ocean pH and CO2 partial pressure. However, large amounts of limestone and energy for materials handling would be required for this approach (roughly the same order of magnitude as the amounts per tonne of CO2 injected that are needed for mineral carbonation; see Section 7).

Table TS.7. Fraction of CO2 retained for ocean storage

Source & ©: IPCC  Carbon Dioxide Capture and Storage: Technical Summary (2005)
6. Ocean storage, p. 37

6.2 What are possible environmental impacts and costs of ocean storage

The source document for this Digest states:

CO2 can be injected into the deep ocean from oil
CO2 can be injected into the deep ocean from oil platforms.
Source: Stephen Knowles

The injection of a few GtCO2 would produce a measurable change in ocean chemistry in the region of injection, whereas the injection of hundreds of GtCO2 would produce larger changes in the region of injection and eventually produce measurable changes over the entire ocean volume. Model simulations that assume a release from seven locations at 3,000 m depth and ocean storage providing 10% of the mitigation effort for stabilization at 550 ppmv CO2 projected acidity changes (pH changes) of more than 0.4 over approximately 1% of the ocean volume. By comparison, in a 550 ppmv stabilization case without ocean storage, a pH change of more than 0.25 at the ocean surface was estimated due to equilibration with the elevated CO2 concentrations in the atmosphere. In either case, a pH change of 0.2 to 0.4 is significantly greater than pre-industrial variations in ocean acidity. Over centuries, ocean mixing will result in the loss of isolation of injected CO2. As more CO2 reaches the ocean surface waters, releases into the atmosphere would occur gradually from large regions of the ocean. There are no known mechanisms for sudden or catastrophic release of injected CO2 from the ocean into the atmosphere.

Experiments show that adding CO2 can harm marine organisms. Effects of elevated CO2 levels have mostly been studied on time scales up to several months in individual organisms that live near the ocean surface. Observed phenomena include reduced rates of calcification, reproduction, growth, circulatory oxygen supply and mobility, as well as increased mortality over time. In some organisms these effects are seen in response to small additions of CO2. Immediate mortality is expected close to injection points or CO2 lakes. The chronic effects of direct CO2 injection into the ocean on ocean organisms or ecosystems over large ocean areas and long time scales have not yet been studied.

No controlled ecosystem experiments have been performed in the deep ocean, so only a preliminary assessment of potential ecosystem effects can be given. It is expected that ecosystem consequences will increase with increasing CO2 concentrations and decreasing pH, but the nature of such consequences is currently not understood, and no environmental criteria have as yet been identified to avoid adverse effects. At present, it is also unclear how or whether species and ecosystems would adapt to the sustained chemical changes.

Costs of ocean storage

Although there is no experience with ocean storage, some attempts have been made to estimate the costs of CO2 storage projects that release CO2 on the sea floor or in the deep ocean. The costs of CO2 capture and transport to the shoreline (e.g via pipelines) are not included in the cost of ocean storage. However, the costs of offshore pipelines or ships, plus any additional energy costs, are included in the ocean storage cost. The costs of ocean storage are summarized in Table TS.8. These numbers indicate that, for short distances, the fixed pipeline option would be cheaper. For larger distances, either the moving ship or the transport by ship to a platform with subsequent injection would be more attractive.

Table TS.8. Costs for ocean storage at depths deeper than 3,000 m

Legal aspects and public perception

The global and regional treaties on the law of the sea and marine environment, such as the OSPAR and the London Convention discussed earlier in Section 5 for geological storage sites, also affect ocean storage, as they concern the ‘maritime area’. Both Conventions distinguish between the storage method employed and the purpose of storage to determine the legal status of ocean storage of CO2. As yet, however, no decision has been made about the legal status of intentional ocean storage.

The very small number of public perception studies that have looked at the ocean storage of CO2 indicate that there is very little public awareness or knowledge of this subject. In the few studies conducted thus far, however, the public has expressed greater reservations about ocean storage than geological storage. These studies also indicate that the perception of ocean storage changed when more information was provided; in one study this led to increased acceptance of ocean storage, while in another study it led to less acceptance. The literature also notes that ‘significant opposition’ developed around a proposed CO2 release experiment in the Pacific Ocean.

Source & ©: IPCC (WGI)  Intergovernmental Panel on Climate Change IPCC
Carbon Dioxide Capture and Storage: Technical Summary (2005)

6. Ocean storage, p. 38

CO2 Capture & Storage foldout
Themes covered
Publications A-Z