Languages:
 

Box 2. MA Scenarios

The MA developed four scenarios to explore plausible futures for ecosystems and human well-being based on different assumptions about driving forces of change and their possible interactions:

Global Orchestration — This scenario depicts a globally connected society that focuses on global trade and economic liberalization and takes a reactive approach to ecosystem problems but that also takes strong steps to reduce poverty and inequality and to invest in public goods such as infrastructure and education. Economic growth in this scenario is the highest of the four scenarios, while it is assumed to have the lowest population in 2050.

Order from Strength — This scenario represents a regionalized and fragmented world, concerned with security and protection, emphasizing primarily regional markets, paying little attention to public goods, and taking a reactive approach to ecosystem problems. Economic growth rates are the lowest of the scenarios (particularly low in developing countries) and decrease with time, while population growth is the highest.

Adapting Mosaic — In this scenario, regional watershed-scale ecosystems are the focus of political and economic activity. Local institutions are strengthened and local ecosystem management strategies are common; societies develop a strongly proactive approach to the management of ecosystems. Economic growth rates are somewhat low initially but increase with time, and population in 2050 is nearly as high as in Order from Strength.

TechnoGarden — This scenario depicts a globally connected world relying strongly on environmentally sound technology, using highly managed, often engineered, ecosystems to deliver ecosystem services, and taking a proactive approach to the management of ecosystems in an effort to avoid problems. Economic growth is relatively high and accelerates, while population in 2050 is in the mid-range of the scenarios.

The scenarios are not predictions; instead they were developed to explore the unpredictable features of change in drivers and ecosystem services. No scenario represents business as usual, although all begin from current conditions and trends.

Both quantitative models and qualitative analyses were used to develop the scenarios. For some drivers (such as land use change and carbon emissions) and ecosystem services (water withdrawals, food production), quantitative projections were calculated using established, peer-reviewed global models. Other drivers (such as rates of technological change and economic growth), ecosystem services (particularly supporting and cultural services, such as soil formation and recreational opportunities), and human well-being indicators (such as human health and social relations) were estimated qualitatively. In general, the quantitative models used for these scenarios addressed incremental changes but failed to address thresholds, risk of extreme events, or impacts of large, extremely costly, or irreversible changes in ecosystem services. These phenomena were addressed qualitatively by considering the risks and impacts of large but unpredictable ecosystem changes in each scenario.

Three of the scenarios—Global Orchestration, Adapting Mosaic, and TechnoGarden—incorporate significant changes in policies aimed at addressing sustainable development challenges. In Global Orchestration trade barriers are eliminated, distorting subsidies are removed, and a major emphasis is placed on eliminating poverty and hunger. In Adapting Mosaic, by 2010, most countries are spending close to 13% of their GDP on education (as compared to an average of 3.5% in 2000), and institutional arrangements to promote transfer of skills and knowledge among regional groups proliferate. In TechnoGarden policies are put in place to provide payment to individuals and companies that provide or maintain the provision of ecosystem services. For example, in this scenario, by 2015, roughly 50% of European agriculture, and 10% of North American agriculture is aimed at balancing the production of food with the production of other ecosystem services. Under this scenario, significant advances occur in the development of environmental technologies to increase production of services, create substitutes, and reduce harmful trade-offs.

Source: Millennium Ecosystem Assessment
  Ecosystems and Human Well-being: Biodiversity Synthesis (2005),
p.3

Related publication:
Biodiversity (MA) homeBiodiversity & Human Well-being
Other Figures & Tables on this publication:

Direct cross-links to the Global Assessment Reports of the Millennium Assessment

Box 1. Biodiversity and Its Loss— Avoiding Conceptual Pitfalls

Box 1.1. Linkages among Biodiversity, Ecosystem Services, and Human Well-being

Box 1.2. Measuring and Estimating Biodiversity: More than Species Richness

Box 1.3. Ecological Indicators and Biodiversity

Box 1.4. Criteria for Effective Ecological Indicators

Box 2. MA Scenarios

Box 2.1. Social Consequences of Biodiversity Degradation (SG-SAfMA)

Box 2.2. Economic Costs and Benefits of Ecosystem Conversion

Box 2.3. Concepts and Measures of Poverty

Box 2.4. Conflicts Between the Mining Sector and Local Communities in Chile

Box 3.1. Direct Drivers: Example from Southern African Sub-global Assessment

Box 4.1. An Outline of the Four MA Scenarios

Box 5.1. Key Factors of Successful Responses to Biodiversity Loss

Figure 3.3. Species Extinction Rates

Figure 1.1. Estimates of Proportions and Numbers of Named Species in Groups of Eukaryote Species and Estimates of Proportions of the Total Number of Species in Groups of Eukaryotes

Figure 1.2. Comparisons for the 14 Terrestrial Biomes of the World in Terms of Species Richness, Family Richness, and Endemic Species

Figure 1.3. The 8 Biogeographical Realms and 14 Biomes Used in the MA

Figure 1.4. Biodiversity, Ecosystem Functioning, and Ecosystem Services

Figure 2. How Much Biodiversity Will Remain a Century from Now under Different Value Frameworks?

Figure 2.1. Efficiency Frontier Analysis of Species Persistence and Economic Returns

Figure 3. Main Direct Drivers

Figure 3.1. Percentage Change 1950–90 in Land Area of Biogeographic Realms Remaining in Natural Condition or under Cultivation and Pasture

Figure 3.2. Relationship between Native Habitat Loss by 1950 and Additional Losses between 1950 and 1990

Figure 3.3. Species Extinction Rates

Figure 3.4. Red List Indices for Birds, 1988–2004, in Different Biogeographic Realms

Figure 3.5. Density Distribution Map of Globally Threatened Bird Species Mapped at a Resolution of Quarter-degree Grid Cell

Figure 3.6. Threatened Vertebrates in the 14 Biomes, Ranked by the Amount of Their Habitat Converted by 1950

Figure 3.7. The Living Planet Index, 1970–2000

Figure 3.8. Illustration of Feedbacks and Interaction between Drivers in Portugal Sub-global Assessment

Figure 3.9. Summary of Interactions among Drivers Associated with the Overexploitation of Natural Resources

Figure 3.10. Main Direct Drivers

Figure 3.11. Effect of Increasing Land Use Intensity on the Fraction of Inferred Population 300 Years Ago of Different Taxa that Remain

Figure 3.12. Extent of Cultivated Systems, 2000

Figure 3.13. Decline in Trophic Level of Fisheries Catch since 1950

Figure 3.14. Estimated Global Marine Fish Catch, 1950–2001

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.16. Fragmentation and Flow in Major Rivers

Figure 3.17 Trends in Global Use of Nitrogen Fertilizer, 1961–2001 (million tons)

Figure 3.18 Trends in Global Use of Phosphate Fertilizer, 1961–2001 (million tons)

Figure 3.19. Estimated Total Reactive Nitrogen Deposition from the Atmosphere (Wet and Dry) in 1860, Early 1990s, and Projected for 2050

Figure 3.20. Historical and Projected Variations in Earth’s Surface Temperature

Figure 4. Trade-offs between Biodiversity and Human Well-being under the Four MA Scenarios

Figure 4.1. Losses of Habitat as a Result of Land Use Change between 1970 and 2050 and Reduction in the Equilibrium Number of Vascular Plant Species under the MA Scenarios

Figure 4.2. Relative Loss of Biodiversity of Vascular Plants between 1970 and 2050 as a Result of Land Use Change for Different Biomes and Realms in the Order from Strength Scenario

Figure 4.3. Land-cover Map for the Year 2000

Figure 4.4. Conversion of Terrestrial Biomes

Figure 4.5. Forest and Cropland/Pasture in Industrial and Developing Regions under the MA Scenarios

Figure 4.6. Changes in Annual Water Availability in Global Orchestration Scenario by 2100

Figure 4.7. Changes in Human Well-being and Socioecological Indicators by 2050 under the MA Scenarios

Figure 6.1. How Much Biodiversity Will Remain a Century from Now under Different Value Frameworks?

Figure 6.2. Trade-offs between Biodiversity and Human Well-being under the Four MA Scenarios

Table 1.1. Ecological Surprises Caused by Complex Interactions

Table 2.1. Percentage of Households Dependent on Indigenous Plant-based Coping Mechanisms at Kenyan and Tanzanian Site

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Provisioning services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Regulating services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Cultural services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Supporting services

Table 6.1. Prospects for Attaining the 2010 Sub-targets Agreed to under the Convention on Biological Diversity